Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Real-Time Visual Object Tracking Based on Reinforcement Learning with Twin Delayed Deep Deterministic Algorithm

Authors: Shengjie Zheng; Huan Wang;

Real-Time Visual Object Tracking Based on Reinforcement Learning with Twin Delayed Deep Deterministic Algorithm

Abstract

Object tracking as a low-level vision task has always been a hot topic in computer vision. It is well known that Challenges such as background clutters, fast object motion and occlusion et al. affect a lot the robustness or accuracy of existing object tracking methods. This paper proposes a reinforcement learning model based on Twin Delayed Deep Deterministic algorithm (TD3) for single object tracking. The model is based on the deep reinforcement learning model, Actor-Critic (AC), in which the Actor network predicts a continuous action that moves the target bounding box in the previous frame to the object position in the current frame and adapts to the object size. The Critic network evaluates the confidence of the new bounding box online to determine whether the Critic model needs to be updated or re-initialized. In further, in our model we use TD3 algorithm to further optimize the AC model by using two Critic networks to jointly predict the bounding box confidence, and to obtain the smaller predicted value as the label to update the network parameters, thereby rendering the Critic network to avoid excessive estimation bias, accelerate the convergence of the loss function, and obtain more accurate prediction values. Also, a small amount of random noise with upper and lower bounds are added to the action in the Actor model, and the search area is reasonably expanded in offline learning to improve the robustness of the tracking method under strong background interference and fast object motion. The Critic model can also guide the Actor model to select the best action and continuously update the state of the tracking object. Comprehensive experimental results on the OTB-2013 and OTB-2015 benchmarks demonstrate that our tracker performs best in precision, robustness, and efficiency when compared with state-of-the-art methods.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!