
arXiv: 2301.11964
Correctly identifying the type of file under examination is a critical part of a forensic investigation. The file type alone suggests the embedded content, such as a picture, video, manuscript, spreadsheet, etc. In cases where a system owner might desire to keep their files inaccessible or file type concealed, we propose using an adversarially-trained machine learning neural network to determine a file's true type even if the extension or file header is obfuscated to complicate its discovery. Our semi-supervised generative adversarial network (SGAN) achieved 97.6% accuracy in classifying files across 11 different types. We also compared our network against a traditional standalone neural network and three other machine learning algorithms. The adversarially-trained network proved to be the most precise file classifier especially in scenarios with few supervised samples available. Our implementation of a file classifier using an SGAN is implemented on GitHub (https://ksaintg.github.io/SGAN-File-Classier).
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
