
We propose a general procedure for iterative inclusion of Stueckelberg fields to convert the theory into gauge system being equivalent to the original one. In so doing, we admit reducibility of the Stueckelberg gauge symmetry. In this case, no pairing exists between Stueckelberg fields and gauge parameters, unlike the irreducible Stueckelberg symmetry. The general procedure is exemplified by the case of Proca model, with the third order involutive closure chosen as the starting point. In this case, the set of Stueckelberg fields includes, besides the scalar, also the second rank antisymmetric tensor. The reducible Stueckelberg gauge symmetry is shown to admit different gauge fixing conditions. One of the gauges reproduces the original Proca theory, while another one excludes the original vector and the Stueckelberg scalar. In this gauge, the irreducible massive spin one is represented by antisymmetric second rank tensor obeying the third order field equations. Similar dual formulations are expected to exist for the fields of various spins.
15 pages
High Energy Physics - Theory, Physics, QC1-999, Stueckelberg fields, FOS: Physical sciences, Relativity and gravitational theory, калибровочная симметрия, Reducible gauge symmetry, High Energy Physics - Theory (hep-th), Quantum theory, Dualities, двойственность, dualities, reducible gauge symmetry
High Energy Physics - Theory, Physics, QC1-999, Stueckelberg fields, FOS: Physical sciences, Relativity and gravitational theory, калибровочная симметрия, Reducible gauge symmetry, High Energy Physics - Theory (hep-th), Quantum theory, Dualities, двойственность, dualities, reducible gauge symmetry
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
