Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Psychological Medici...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Psychological Medicine
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Radboud Repository
Article . 2025
Data sources: Radboud Repository
versions View all 6 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shared genetics and causal relationship between sociability and the brain’s default mode network

Authors: Fanelli, G.; Robinson, J.; Fabbri, C.; Bralten, J.B.; Roth Mota, N.; Arenella, M.; Rovny, M.; +8 Authors

Shared genetics and causal relationship between sociability and the brain’s default mode network

Abstract

Abstract Background The brain’s default mode network (DMN) plays a role in social cognition, with altered DMN function being associated with social impairments across various neuropsychiatric disorders. However, the genetic basis linking sociability with DMN function remains underexplored. This study aimed to elucidate the shared genetics and causal relationship between sociability and DMN-related resting-state functional MRI (rs-fMRI) traits. Methods We conducted a comprehensive genomic analysis using large-scale genome-wide association study (GWAS) summary statistics for sociability and 31 activity and 64 connectivity DMN-related rs-fMRI traits (N = 34,691–342,461). We performed global and local genetic correlations analyses and bi-directional Mendelian randomization (MR) to assess shared and causal effects. We prioritized genes influencing both sociability and rs-fMRI traits by combining expression quantitative trait loci MR analyses, the CELLECT framework – integrating single-nucleus RNA sequencing (snRNA-seq) data with GWAS – and network propagation within a protein–protein interaction network. Results Significant local genetic correlations were identified between sociability and two rs-fMRI traits, one representing spontaneous activity within the temporal cortex, the other representing connectivity between the cingulate and angular/temporal cortices. MR analyses suggested potential causal effects of sociability on 12 rs-fMRI traits. Seventeen genes were highly prioritized, with LINGO1, ELAVL2, and CTNND1 emerging as top candidates. Among these, DRD2 was also identified, serving as a robust internal validation of our approach. Conclusions By combining genomic and transcriptomic data, our gene prioritization strategy may serve as a blueprint for future studies. Our findings can guide further research into the biological mechanisms underlying sociability and its role in the development, prognosis, and treatment of neuropsychiatric disorders.

Keywords

Male, Adult, Default Mode Network/physiology, Cognitive Neuroscience - Development and lifelong plasticity, 220 Statistical Imaging Neuroscience, Default Mode Network, Brain, Brain/physiology, Mendelian Randomization Analysis, Magnetic Resonance Imaging, Psychiatry - Development and lifelong plasticity, Human Genetics - Development and lifelong plasticity, Humans, Original Article, Female, Social Behavior, Genome-Wide Association Study

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid