Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Cell an...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Cell and Developmental Biology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Water temperature modulates multidimensional plastic responses to water flow during the ontogeny of a neotropical fish (Astyanax lacustris, characiformes)

Authors: Leandro Lofeu; Bianca Bonini-Campos; Tiana Kohlsdorf;

Water temperature modulates multidimensional plastic responses to water flow during the ontogeny of a neotropical fish (Astyanax lacustris, characiformes)

Abstract

IntroductionPlastic phenotypes result from multidimensional developmental systems responding to distinct yet simultaneous environmental signals, which may differently affect the magnitude and directions of plastic responses.Concomitant environmental signals during development may result in dominant, synergistic, or even antagonistic phenotypic effects, so that a given condition may amplify or minimize plastic responses to other environmental stimuli. Knowledge on how external information shapes complex plastic phenotypes is essential to predict potential evolutionary trajectories driven by developmental plasticity.MethodsHere, we manipulate water temperature to evaluate its effects on the well-described phenotypic accommodation of fish growth in the presence of water flow, using the neotropical species Astyanax lacustris. We include larval and juvenile ontogenetic stages to examine the interaction between these two environmental signals in plastic responses related to body size and shape, skeleton ossification and gene expression, using bmp4 as a proxy for ossification pathways.Results and discussionOur results demonstrate that water temperature plays a crucial role determining the expression of plastic variation at all dimensions, and effects of water flow were restricted to specific thermal regimes. Combination of high temperature and water flow has a major effect on body shape and unveils unique phenotypic patterns, supporting the prediction that high temperatures can amplify plastic responses to external signals. Specifically, fish raised in the presence of water flow at warmer environments grew faster and ossified earlier, and this condition increased bmp4 expression levels especially at later developmental stages. Such plastic phenotypes likely involve a functional relationship with swimming performance in running-water environments. Our findings highlight the importance of studying developmental plasticity in complex environments using a multidimensional approach, especially considering increments in water temperatures due to accelerated climate changes that likely impact the fish developmental potential to mitigate environmental changes through plastic responses.

Related Organizations
Keywords

body shape, ossification, Cell and Developmental Biology, phenotype, QH301-705.5, plasticity, BMP4, Biology (General), body size

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold