Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/globec...
Article . 2024 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
DBLP
Conference object
Data sources: DBLP
DBLP
Article
Data sources: DBLP
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

MambaJSCC: Deep Joint Source-Channel Coding with Visual State Space Model

Authors: Tong Wu 0003; Zhiyong Chen 0002; Meixia Tao; Xiaodong Xu 0001; Wenjun Zhang 0001; Ping Zhang 0003;

MambaJSCC: Deep Joint Source-Channel Coding with Visual State Space Model

Abstract

Lightweight and efficient deep joint source-channel coding (JSCC) is a key technology for semantic communications. In this paper, we design a novel JSCC scheme named MambaJSCC, which utilizes a visual state space model with channel adaptation (VSSM-CA) block as its backbone for transmitting images over wireless channels. The VSSM-CA block utilizes VSSM to integrate two-dimensional images with the state space, enabling feature extraction and encoding processes to operate with linear complexity. It also incorporates channel state information (CSI) via a newly proposed CSI embedding method. This method deploys a shared CSI encoding module within both the encoder and decoder to encode and inject the CSI into each VSSM-CA block, improving the adaptability of a single model to varying channel conditions. Experimental results show that MambaJSCC not only outperforms Swin Transformer based JSCC (SwinJSCC) but also significantly reduces parameter size, computational overhead, and inference delay (ID). For example, with employing an equal number of the VSSM-CA blocks and the Swin Transformer blocks, MambaJSCC achieves a 0.48 dB gain in peak-signal-to-noise ratio (PSNR) over SwinJSCC while requiring only 53.3% multiply-accumulate operations, 53.8% of the parameters, and 44.9% of ID.

submitted to IEEE conference

Related Organizations
Keywords

FOS: Computer and information sciences, Computer Science - Information Theory, Information Theory (cs.IT)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green