Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ YUHSpace (Yonsei Uni...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Deep Learning on Multiphysical Features and Hemodynamic Modeling for Abdominal Aortic Aneurysm Growth Prediction

Authors: Sekeun Kim; Zhenxiang Jiang; Byron A. Zambrano; Yeonggul Jang; Seungik Baek; Sun K. Yoo; Hyuk-Jae Chang;

Deep Learning on Multiphysical Features and Hemodynamic Modeling for Abdominal Aortic Aneurysm Growth Prediction

Abstract

Prediction of abdominal aortic aneurysm (AAA) growth is of essential importance for the early treatment and surgical intervention of AAA. Capturing key features of vascular growth, such as blood flow and intraluminal thrombus (ILT) accumulation play a crucial role in uncovering the intricated mechanism of vascular adaptation, which can ultimately enhance AAA growth prediction capabilities. However, local correlations between hemodynamic metrics, biological and morphological characteristics, and AAA growth rates present high inter-patient variability that results in that the temporal-spatial biochemical and mechanical processes are still not fully understood. Hence, this study aims to integrate the physics-based knowledge with deep learning with a patch-based convolutional neural network (CNN) approach by incorporating important multiphysical features relating to its pathogenesis for validating its impact on AAA growth prediction. For this task, we observe that the unstructured multiphysical features cannot be directly employed in the kernel-based CNN. To tackle this issue, we propose a parameterization of features to leverage the spatio-temporal relations between multiphysical features. The proposed architecture was tested on different combinations of four features including radius, intraluminal thrombus thickness, time-average wall shear stress, and growth rate from 54 patients with 5-fold cross-validation with two metrics, a root mean squared error (RMSE) and relative error (RE). We conduct extensive experiments on AAA patients, the results show the effect of leveraging multiphysical features and demonstrate the superiority of the presented architecture to previous state-of-the-art methods in AAA growth prediction.

Country
Korea (Republic of)
Related Organizations
Keywords

Abdominal* / diagnostic imaging, Hemodynamics, 610, 600, Thrombosis, Deep Learning*, Thrombosis* / diagnostic imaging, Thrombosis* / pathology, Aortic Aneurysm, Thrombosis* / etiology, Deep Learning, Humans, Abdominal, Aorta, Abdominal, Aorta, Aortic Aneurysm, Abdominal

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    18
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
18
Top 10%
Average
Top 10%
Green