
In this Letter, by reconstructing the $Om$ diagnostic and the deceleration parameter $q$ from the latest Union2 Type Ia supernova sample with and without the systematic error along with the baryon acoustic oscillation (BAO) and the cosmic microwave background (CMB), we study the cosmic expanding history, using the Chevallier-Polarski-Linder (CPL) parametrization. We obtain that Union2+BAO favor an expansion with a decreasing of the acceleration at $z<0.3$. However, once the CMB data is added in the analysis, the cosmic acceleration is found to be still increasing, indicating a tension between low redshift data and high redshift one. In order to reduce this tension significantly, two different methods are considered and thus two different subsamples of Union2 are selected. We then find that two different subsamples+BAO+CMB give completely different results on the cosmic expanding history when the systematic error is ignored, with one suggesting a decreasing cosmic acceleration, the other just the opposite, although both of them alone with BAO support that the cosmic acceleration is slowing down. However, once the systematic error is considered, two different subsamples of Union2 along with BAO and CMB all favor an increasing of the present cosmic acceleration. Therefore a clear-cut answer on whether the cosmic acceleration is slowing down calls for more consistent data and more reliable methods to analyze them.
17 pages, 6 figures; PLB in press
CPL parametrization, Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Type Ia supernova, Accelerating cosmic expansion, General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics
CPL parametrization, Cosmology and Nongalactic Astrophysics (astro-ph.CO), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Type Ia supernova, Accelerating cosmic expansion, General Relativity and Quantum Cosmology, Astrophysics - Cosmology and Nongalactic Astrophysics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 87 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
