Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1109/wcnc45...
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Conference object
Data sources: DBLP
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Secrecy Rate Analysis of mmWave MISO Ad Hoc Networks with Null Space Precoding

Authors: Ahmed F. Darwesh; Abraham O. Fapojuwo;

Secrecy Rate Analysis of mmWave MISO Ad Hoc Networks with Null Space Precoding

Abstract

Secure communication in the millimeter wave (mmWave) network is an important issue in the next-generation wireless network due to the massive improvement in the eavesdroppers’ ability. This paper studies the secrecy rate performance of a mmWave multi-input single-output (MISO) ad hoc network in the presence of colluding eavesdroppers. Firstly, to enhance the average achievable secrecy rate, an artificial noise (AN) transmission with null space linear precoder (Tx-ANLP) is applied, taking into consideration the effect of blockage and Nakagami fading. Consequently, the tools of stochastic geometry are used to derive the mathematical expression of the average achievable secrecy rate for mmWave MISO ad hoc network with Tx-ANLP technique. Numerical and simulation results show that, using the Tx-ANLP technique achieves more than three-fold improvement in the average secrecy rate over that without in the high power transmit regime (>15dBm). Moreover, the effect of increasing the colluding eavesdroppers’ intensity without using the Tx-ANLP technique is studied which provides a high deterioration in the average secrecy rate. Conversely, when the Tx-ANLP technique is applied, increasing the colluding eavesdroppers’ intensity has no negative impact on the secrecy rate. Furthermore, the proper power allocation between the message and AN signals which maximizes the average secrecy rate is computed. The results therefore show that the Tx-ANLP technique is a useful technique to enhance the secrecy performance of mmWave MISO ad hoc network in the presence of colluding eavesdroppers.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!