Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Journal of Sele...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Article . 2025 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

FRANet: A Feature Refinement Attention Network for SAR Image Denoising

Authors: Shuaiqi Liu; Yu Lei; Qi Hu; Ming Liu; Bing Li; Weiming Hu; Yu-Dong Zhang;

FRANet: A Feature Refinement Attention Network for SAR Image Denoising

Abstract

Since synthetic aperture radar (SAR) images have complex noise and have no clean reference images, SAR image denoising is very challenging. With the development of deep learning, several denoising algorithms based on deep learning are proposed to achieve a better SAR image denoising effect. However, most networks are prone to gradient disappearance and explosion in the training process. The deep network model will produce an excessive amount of computation. The denoising time is also too long. Since most of the denoising algorithms based on deep learning use simulated images for model training, it is difficult to effectively suppress speckle noise in the real SAR image while a balance between denoising and detail preservation cannot be achieved. To address the mentioned problems, we propose a novel feature refinement attention network named FRANet. In FRANet, a feature refinement network is first used to refine the input noise image to extract more useful features while accelerating network training. Second, a feature attention encoder–decoder network is constructed for deep feature extraction. This network uses an asymmetric encoder–decoder structure to expand the receptive field, which can improve the information extraction ability and reduce the number of parameters effectively. Finally, the final denoised SAR image is obtained by global residual learning. Compared with other denoising algorithms, the proposed algorithm can achieve better results in denoising performance and running time.

Related Organizations
Keywords

Ocean engineering, image denoising, QC801-809, Attention encoder–decoder network, Geophysics. Cosmic physics, deep learning, feature refinement, synthetic aperture radar (SAR), TC1501-1800

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold