Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Wireless Communications
Article . 2013 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Power Optimized DSTBC Assisted DMF Relaying in Wireless Sensor Networks with Redundant Super Nodes

Authors: Abolfazl Razi; Fatemeh Afghah; Ali Abedi;

Power Optimized DSTBC Assisted DMF Relaying in Wireless Sensor Networks with Redundant Super Nodes

Abstract

In conventional two-tiered Wireless Sensor Networks (WSN), sensors in each cluster transmit observed data to a fusion center via an intermediate supernode. This structure is vulnerable to supernode failure. A double supernode system model with a new coding scheme is proposed to monitor a binary data source. A Distributed Joint Source Channel Code (D-JSCC) is proposed for sensors inside a cluster that provides two advantages of low complexity transmitters and scalability to a large number of sensors. In order to setup a robust communication channel from sensors to the data fusion center, Distributed Space-Time Block Coding (D-STBC) is employed at two supernodes prior to relaying that results in additional diversity gain. DeModulate and Forward (DMF) relaying mode is chosen to enable packet reformatting at the supernodes, which is not possible in widely used Amplify and Forward (AF) mode. The optimum power allocation for the two-hop multiple DMF relaying is calculated to minimize the system Bit Error Rate (BER). An upper bound is derived for the system end-to-end BER by analyzing a basic decoder operation over the system model. The simulation results validate this upper bound and also demonstrate considerable improvement in the system BER for the proposed coding scheme.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!