
Accurately identifying optical fiber vibration signals is crucial for ensuring the proper operation of optical fiber perimeter security warning systems. To enhance the recognition accuracy of intrusion events detected by the distributed acoustic sensing system (DAS) based on phase-sensitive optical time-domain reflectometer (φ-OTDR) technology, we propose an identification method that combines empirical mode decomposition (EMD) with convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. First, the EMD algorithm decomposes the collected original optical fiber vibration signal into several intrinsic mode functions (IMFs), and the correlation coefficient between each IMF and the original signal is calculated. The signal is then reconstructed by selecting effective IMF components based on a suitable threshold. This reconstructed signal serves as the input for the network. CNN is used to extract time-series features from the vibration signal and LSTM is employed to classify the reconstructed signal. Experimental results demonstrate that this method effectively identifies three different types of vibration signals collected from a real-world environment, achieving a recognition accuracy of 97.3% for intrusion signals. This method successfully addresses the challenge of φ-OTDR pattern recognition and provides valuable insights for the development of practical engineering products.
fiber perimeter warning, Chemical technology, deep learning, TP1-1185, empirical mode decomposition, distributed optical fiber vibration sensing (DAS), Article
fiber perimeter warning, Chemical technology, deep learning, TP1-1185, empirical mode decomposition, distributed optical fiber vibration sensing (DAS), Article
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
