Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Neuroscie...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Neuroscience Methods
Article . 2024 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electrophysiological properties of dorsal root ganglion neurons cultured on 3D silicon micro-pillar substrates

Authors: Tihana, Marciuš; Alexandru-Florian, Deftu; Ivana, Vuka; Dries, Braeken; Damir, Sapunar;

Electrophysiological properties of dorsal root ganglion neurons cultured on 3D silicon micro-pillar substrates

Abstract

Silicon-based micro-pillar substrates (MPS), as three-dimensional cell culture platforms with vertically aligned micro-patterned scaffolding structures, are known to facilitate high-quality growth and morphology of dorsal root ganglion (DRG) sensory neurons, promote neurite outgrowth and enhance neurite alignment. However, the electrophysiological aspects of DRG neurons cultured on silicon MPSs have not been thoroughly investigated, which is of greatest importance to ensure that such substrates do not disrupt neuronal homeostasis and function before their widespread adoption in diverse biomedical applications.We conducted whole-cell patch-clamp recordings to explore the electrophysiological properties of DRG neurons cultured on MPS arrays, utilizing a custom-made upright patch-clamp setup.Our findings revealed that DRG neurons exhibited similar electrophysiological responses on patterned MPS samples when compared to the control planar glass surfaces. Notably, there were no significant differences observed in the action potential parameters or firing patterns of action potentials between neurons grown on either substrate.In the current study we for the first time confirmed that successful electrophysiological recordings can be obtained from the cells grown on MPS.Our results imply that, despite the potential alterations caused by the cumulative trauma of tissue harvest and cell dissociation, essential functional cell properties of DRG neurons appear to be relatively maintained on MPS surfaces. Therefore, vertically aligned silicon MPSs could be considered as a potentially effective three-dimensional system for supporting a controlled cellular environment in culture.

Related Organizations
Keywords

3D cell culture, Neurons, Topography, Silicon, Cultured, Patch-Clamp Techniques, Spinal, Cells, DRG sensory neurons, Cell Culture Techniques, Action Potentials, Three Dimensional, Rats, Electrophysiological Phenomena, Rats, Sprague-Dawley, Pillars, Ganglia, Spinal, Animals, Ganglia, Biomaterial substrates, Cell Culture Techniques, Three Dimensional, Sprague-Dawley, Patch-clamp, Cells, Cultured, Neuronal function

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!