Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ScienceRisearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ScienceRise
Article . 2016 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ScienceRise
Article
License: CC BY
Data sources: UnpayWall
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The synthesis, computer prediction of the biological activity and the acute toxicity of 4-aryl-5-oxo-4,5-dihydro[1,2,4]triazolo[4,3-a]quinazoline-8-carboxamides

Authors: Danylchenko, Svitlana; Drushlyak, Oleksander; Kovalenko, Sergiy; Kovalenko, Svitlana;

The synthesis, computer prediction of the biological activity and the acute toxicity of 4-aryl-5-oxo-4,5-dihydro[1,2,4]triazolo[4,3-a]quinazoline-8-carboxamides

Abstract

Aim. The aim of present study was to conduct modelling of the virtual library of 4-aryl-5-oxo-4,5-dihydro[1,2,4]triazolo[4,3-a]quinazoline-8-carboxamides, to determine the most probable biological activity spectrum and the acute toxicity of studied compounds by PASS and GUSAR software, sort out the most perspective substances and develop preparative protocols for their synthesis. Methods. Using the PASS program computer prediction of the biological activity of 4-aryl-5-oxo-4,5-dihydro[1,2,4]triazolo[4,3-a]quinazoline-8-carboxamides has been performed. Prediction of the acute toxicity has been carried out by the GUSAR software. The structure of the compounds synthesized has been proven by elemental analysis and 1 H NMR spectroscopy data. Results. The synthesis of 4-aryl-5-oxo-4,5-dihydro[1,2,4]triazolo[4,3-a]quinazoline-8-carboxamides has been conducted starting from corresponding methyl 3-aryl-4-oxo-2-thioxo-1,2,3,4-tetrahydroquinazoline-7-carboxylates, which were converted into corresponding 3-aryl-2-hydrazino-4-oxo-3,4-dihydroquinazoline-7-carbohydrazides by treatment with hydrazine hydrate. Heating of these 2-hydrazinoquinazolin-4(3H)-ones with acetylacetone was resulted in 4-aryl-8-[(3,5-dimethyl-1H-pyrazol-1-yl)carbonyl]-1-methyl[1,2,4]triazolo[4,3-a]quinazolin-5(4H)-ones formation. Following substitution of pyrazole moiety by interaction of these compounds with primary amines led to destinated 4-aryl-5-oxo-4,5-dihydro[1,2,4]triazolo[4,3-a]quinazoline-8-carboxamides. The PASS program computer prediction of the biological activity of 4-aryl-5-oxo-4,5-dihydro[1,2,4]triazolo[4,3-a]quinazoline-8-carboxamides has allowed identifying the types of activity of studied compounds and sorting out the leaders with potential antineurotic activity, which are perspective for male reproductive and erectile dysfunction treatment. Prediction of the acute toxicity has been carried out by the GUSAR software, which allowed to refer them to slightly toxic (class 4) or practically nontoxic (class 5) substances. Conclusions. The obtained compounds are perspective objects for further investigations as slightly toxic (nontoxic) substances with potential antineurotic activity, which are perspective for male reproductive and erectile dysfunction treatment

Keywords

синтез; 4-арил-5-оксо-4,5-дигідро[1,2,4]триазоло[4,3-a]хіназолін-8-карбоксаміди; комп’ютерне прогнозування; біологічна активність; гостра токсичність, synthesis, 4-aryl-5-oxo-4,5-dihydro[1,2,4]triazolo[4,3-a]quinazoline-8-carboxamides, computer prediction, biological activity, acute toxicity, UDC 547,792:547,856

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold