Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
SIAM Journal on Scientific Computing
Article . 2025 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Stopping Criteria for the Conjugate Gradient Algorithm in High-Order Finite Element Methods

Stopping criteria for the conjugate gradient algorithm in high-order finite element methods
Authors: Yichen Guo; Eric de Sturler; Tim Warburton;

Stopping Criteria for the Conjugate Gradient Algorithm in High-Order Finite Element Methods

Abstract

We consider stopping criteria that balance algebraic and discretization errors for the conjugate gradient algorithm applied to high-order finite element discretizations of Poisson problems. Firstly, we introduce a new stopping criterion that suggests stopping when the norm of the linear system residual is less than a small fraction of an error indicator derived directly from the residual. This indicator shares the same mesh size and polynomial degree scaling as the norm of the residual, resulting in a robust criterion regardless of the mesh size, the polynomial degree, and the shape regularity of the mesh. Secondly, for solving Poisson problems with highly variable piecewise constant coefficients, we introduce a subdomain-based criterion that recommends stopping when the norm of the linear system residual restricted to each subdomain is smaller than the corresponding indicator also restricted to that subdomain. Reliability and efficiency theorems for the first criterion are established. Numerical experiments, including tests with highly variable piecewise constant coefficients and a GPU-accelerated three-dimensional elliptic solver, demonstrate that the proposed criteria efficiently avoid both premature termination and over-solving.

24 pages, 10 figures

Related Organizations
Keywords

Iterative numerical methods for linear systems, high-order finite element method, conjugate gradient algorithm, FOS: Mathematics, stopping criteria, 65N30, 65N22, 65F10, Mathematics - Numerical Analysis, Numerical Analysis (math.NA), Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs, Numerical solution of discretized equations for boundary value problems involving PDEs

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green