
doi: 10.1145/3473572
This paper presents a novel formal semantics, mechanized in Coq, for a large, sequential subset of the LLVM IR. In contrast to previous approaches, which use relationally-specified operational semantics, this new semantics is based on monadic interpretation of interaction trees, a structure that provides a more compositional approach to defining language semantics while retaining the ability to extract an executable interpreter. Our semantics handles many of the LLVM IR's non-trivial language features and is constructed modularly in terms of event handlers, including those that deal with nondeterminism in the specification. We show how this semantics admits compositional reasoning principles derived from the interaction trees equational theory of weak bisimulation, which we extend here to better deal with nondeterminism, and we use them to prove that the extracted reference interpreter faithfully refines the semantic model. We validate the correctness of the semantics by evaluating it on unit tests and LLVM IR programs generated by HELIX.
Denotational semantics, Monads, Verified Compilation, Compilers, Program verification, LLVM, Software and its engineering, Coq, Semantics, Theory of computation, [INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL]
Denotational semantics, Monads, Verified Compilation, Compilers, Program verification, LLVM, Software and its engineering, Coq, Semantics, Theory of computation, [INFO.INFO-PL] Computer Science [cs]/Programming Languages [cs.PL]
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 37 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
