Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2025
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SQL-Factory: A Multi-Agent Framework for High-Quality and Large-Scale SQL Generation

Authors: Li, Jiahui; Wu, Tongwang; Mao, Yuren; Gao, Yunjun; Feng, Yajie; Liu, Huaizhong;

SQL-Factory: A Multi-Agent Framework for High-Quality and Large-Scale SQL Generation

Abstract

High quality SQL corpus is essential for intelligent database. For example, Text-to-SQL requires SQL queries and correspond natural language questions as training samples. However, collecting such query corpus remains challenging in practice due to the high cost of manual annotation, which highlights the importance of automatic SQL generation. Despite recent advances, existing generation methods still face limitations in achieving both diversity and cost-effectiveness. Besides, many methods also treat all tables equally, which overlooks schema complexity and leads to under-utilization of structurally rich tables. To address these issues, this paper proposes a multi-agent framework for high-quality and large-scale SQL generation, dubbed SQL-Factory. It decomposes the generation process into three collaborative teams: the Generation Team explores diverse query structures using a powerful language model, the Expansion Team scales promising patterns via a lightweight language model, and the Management Team adaptively schedules the workflow and evaluates the quality of synthesized queries. This modular framework ensures a balanced trade-off between diversity, scalability, and generation cost. We apply SQL-Factory to four widely used benchmarks and generate over 300,000 SQL queries with less than $200 API cost. Our generated queries achieve higher diversity compared to other methods, and extensive experiments demonstrate that the generated queries significantly improve the model performance in various downstream tasks.

Keywords

FOS: Computer and information sciences, Databases, Databases (cs.DB)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green