Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao ACS Applied Material...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ACS Applied Materials & Interfaces
Article . 2022 . Peer-reviewed
License: STM Policy #29
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Fast-Decoding Algorithm for Electrode Processes at Electrified Interfaces by Mean-Field Kinetic Model and Bayesian Data Assimilation: An Active-Data-Mining Approach for the Efficient Search and Discovery of Electrocatalysts

Authors: Ken Sakaushi; Aoi Watanabe; Tomoaki Kumeda; Yasushi Shibuta;

Fast-Decoding Algorithm for Electrode Processes at Electrified Interfaces by Mean-Field Kinetic Model and Bayesian Data Assimilation: An Active-Data-Mining Approach for the Efficient Search and Discovery of Electrocatalysts

Abstract

The microscopic origins of the activity and selectivity of electrocatalysts has been a long-lasting enigma since the 19th century. By applying an active-data-mining approach, employing a mean-field kinetic model and a statistical approach of Bayesian data assimilation, we demonstrate here a fast decoding to extract key properties in the kinetics of complicated electrode processes from current-potential profiles in experimental and literary data. As the proof-of-concept, kinetic parameters on the four-electron oxygen reduction reaction in the 0.1 M HClO4 solution (ORR: O2 + 4e- + 4H+ → 2H2O) of various platinum-based single-crystal electrocatalysts are extracted from our own experiments and third-party literature to investigate the microscopic electrode processes. Furthermore, data assimilation of the mean-field ORR model and experimental data is performed based on Bayesian inference for the inductive estimation of kinetic parameters, which sheds light on the dynamic behavior of kinetic parameters with respect to overpotential. This work shows that a fast-decoding algorithm based on a mean-field kinetic model and Bayesian data assimilation is a promising data-driven approach to extract key microscopic features of complicated electrode processes and therefore will be an important method toward building up advanced human-machine collaborations for the efficient search and discovery of high-performance electrochemical materials.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!