
arXiv: 2404.16077
Effective code optimization in compilers is crucial for computer and software engineering. The success of these optimizations primarily depends on the selection and ordering of the optimization passes applied to the code. While most compilers rely on a fixed sequence of optimization passes, current methods to find the optimal sequence either employ impractically slow search algorithms or learning methods that struggle to generalize to code unseen during training. We introduce CompilerDream, a model-based reinforcement learning approach to general code optimization. CompilerDream comprises a compiler world model that accurately simulates the intrinsic properties of optimization passes and an agent trained on this model to produce effective optimization strategies. By training on a large-scale program dataset, CompilerDream is equipped to serve as a general code optimizer across various application scenarios and source-code languages. Our extensive experiments first highlight CompilerDream's strong optimization capabilities for autotuning, where it leads the CompilerGym leaderboard. More importantly, the zero-shot generalization ability of large-scale trained compiler world model and agent, excels across diverse datasets, surpassing LLVM's built-in optimizations and other state-of-the-art methods in both settings of value prediction and end-to-end code optimization.
KDD 2025 camera-ready version with extended appendix. Code is available at https://github.com/thuml/CompilerDream
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Programming Languages, Programming Languages (cs.PL), Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Programming Languages, Programming Languages (cs.PL), Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
