
The advancement of autonomous systems, including self-driving and robotics depends on diverse, high-quality datasets. While existing datasets often focus on standard driving scenarios, they frequently lack challenging edge cases, particularly those involving Vulnerable Road Users (VRUs) in complex and dynamic roadside environments. To address this gap, we introduce a novel Small Multimodal Indian Dataset for Learning and Exploration (SMILE) captured in the unique Indian context, showcasing a level of traffic complexity and diversity underrepresented in current benchmarks. We incorporate synchronized data from LiDAR, a stereo camera, and a monocular camera. This resource aims to facilitate the development of more robust autonomous systems. Additionally, we provide a baseline for depth estimation and set a benchmark for future research.
multimodal sensors, Autonomous vehicles, depth estimation, Electrical engineering. Electronics. Nuclear engineering, computer vision, TK1-9971
multimodal sensors, Autonomous vehicles, depth estimation, Electrical engineering. Electronics. Nuclear engineering, computer vision, TK1-9971
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
