
arXiv: 2412.20709
Accurate identification and localisation of brain tumours from medical images remain challenging due to tumour variability and structural complexity. Convolutional Neural Networks (CNNs), particularly ResNet and Unet, have made significant progress in medical image processing, offering robust capabilities for image segmentation. However, limited research has explored their integration with human-computer interaction (HCI) to enhance usability, interpretability, and clinical applicability. This paper introduces ResUnet++, an advanced hybrid model combining ResNet and Unet++, designed to improve tumour detection and localisation while fostering seamless interaction between clinicians and medical imaging systems. ResUnet++ integrates residual blocks in both the downsampling and upsampling phases, ensuring critical image features are preserved. By incorporating HCI principles, the model provides intuitive, real-time feedback, enabling clinicians to visualise and interact with tumour localisation results effectively. This fosters informed decision-making and supports workflow efficiency in clinical settings. We evaluated ResUnet++ on the LGG Segmentation Dataset, achieving a Jaccard Loss of 98.17%. The results demonstrate its strong segmentation performance and potential for real-world applications. By bridging advanced medical imaging techniques with HCI, ResUnet++ offers a foundation for developing interactive diagnostic tools, improving clinician trust, decision accuracy, and patient outcomes, and advancing the integration of AI in healthcare workflows.
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
FOS: Computer and information sciences, Computer Vision and Pattern Recognition (cs.CV), Image and Video Processing (eess.IV), Computer Science - Computer Vision and Pattern Recognition, FOS: Electrical engineering, electronic engineering, information engineering, Electrical Engineering and Systems Science - Image and Video Processing
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
