
In this paper, we introduce ‘Unmixing Deep Image Prior’ (UnDIP), a deep learning-based technique for the linear hyperspectral unmixing problem. The proposed method contains two steps. First, the endmembers are extracted using a geometric endmember extraction method, i.e. a simplex volume maximization in a subspace of the dataset. Then, the abundances are estimated using a deep image prior. The proposed deep image prior uses a convolutional neural network to estimate the fractional abundances, relying on the extracted endmembers and the observed hyperspectral dataset. The results show considerable improvements compared to state-of-the-art methods.
Engineering sciences. Technology
Engineering sciences. Technology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
