
doi: 10.1029/2024gl113718
AbstractThe idea of cooling the Earth by marine cloud brightening is well established. All prior studies considered enhancing cloud albedo only with fine aerosols (FA). Adding coarse sea spray aerosols (CSA, radius>1 μm) has been thought to have the opposite effect. Using nearly a decade of satellite observations and global aerosol reanalysis, we found that the maximum radiative cooling effect from marine stratocumulus occurs when FA is around 3 μg m−3 and CSA is around 30 μg m−3. Under low winds and high stability conditions, optimal FA and CSA can enhance cooling by −95 W m−2, nearly 60% more than adding FA alone. This CRE response to FA and CSA was consistently observed across various cloud‐controlling factors, thus minimizing the probability of being caused by meteorological co‐variability. These findings improve our understanding of how different aerosols affect Earth's climate, improve the evaluation of cooling achieved through marine cloud brightening, and support its feasibility.
aerosol‐cloud interaction, radiation, QC801-809, Geophysics. Cosmic physics, marine cloud brightening
aerosol‐cloud interaction, radiation, QC801-809, Geophysics. Cosmic physics, marine cloud brightening
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
