Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Haptics
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2022
License: CC BY
MPG.PuRe
Article . 2022
Data sources: MPG.PuRe
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Perceptual Space of Algorithms for Three-to-One Dimensional Reduction of Realistic Vibrations

Authors: Hojin Lee; Guney Isk Tombak; Gunhyuk Park; Katherine J. Kuchenbecker;

Perceptual Space of Algorithms for Three-to-One Dimensional Reduction of Realistic Vibrations

Abstract

Haptics researchers often endeavor to deliver realistic vibrotactile feedback through broad-bandwidth actuators; however, these actuators typically generate only single-axis vibrations, not 3D vibrations like those that occur in natural tool-mediated interactions. Several three-to-one (321) dimensional reduction algorithms have thus been developed to combine 3D vibrations into 1D vibrations. Surprisingly, the perceptual quality of 321-converted vibrations has never been comprehensively compared to rendering of the original 3D signals. In this study, we develop a multi-dimensional vibration rendering system using a magnetic levitation haptic interface. We verify the system's ability to generate realistic 3D vibrations recorded in both tapping and dragging interactions with four surfaces. We then conduct a study with 15 participants to measure the perceived dissimilarities between five 321 algorithms (SAZ, SUM, VM, DFT, PCA) and the original recordings. The resulting perceptual space is investigated with multiple regression and Procrustes analysis to unveil the relationship between the physical and perceptual properties of 321-converted vibrations. Surprisingly, we found that participants perceptually discriminated the original 3D vibrations from all tested 1D versions. Overall, our results indicate that spectral, temporal, and directional attributes may all contribute to the perceived similarities of vibration signals.

IEEE Transactions on Haptics, 15 (3)

ISSN:1939-1412

Keywords

Mathematical models, Vibrations; Three-dimensional displays; Haptic interfaces; Actuators; Rendering (computer graphics); Accelerometers; Mathematical models; Magnetic levitation haptic interface; vibrotactile rendering; perceptual space; dimensional reduction algorithm, Vibrations, Magnetic levitation haptic interface, vibrotactile rendering, Vibration, Haptic interfaces, Feedback, Touch, Humans, Three-dimensional displays, dimensional reduction algorithm, Accelerometers, Rendering (computer graphics), perceptual space, Algorithms, Actuators

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green
hybrid