
Creating descriptive text from medical images to aid in diagnosis and treatment planning is known as medical image captioning, and it is a crucial duty in the healthcare industry. In this study, medical image captioning techniques are systematically reviewed in the literature with an emphasis on Transformer-based models and Convolutional Neural Network-Long Short Term Memory (CNN-LSTM). Aspects like as model designs, datasets, evaluation measures, and difficulties encountered in practical implementations are all examined in this paper. According to the results, Transformer-based models, specifically Swin Transformer and Vision Transformer (ViT), perform better than CNN-LSTM-based models in terms of BLEU, ROUGE, CIDEr, and METEOR scores, resulting in more accurate clinically relevant caption generation. However, there are still a number of issues, including interpretability, computing requirements, and data restrictions. Potential future routes to increase the efficacy and practical application of medical image captioning systems are covered in this paper, including hybrid model approaches, data augmentation techniques, and enhanced explainability methodologies.
medical image captioning, convolutional neural network, transformer, healthcare ai, automatic report generation, Information technology, T58.5-58.64
medical image captioning, convolutional neural network, transformer, healthcare ai, automatic report generation, Information technology, T58.5-58.64
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
