Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Сельскохозяйственные...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Automated Control System for Drum-Type Biofermenter

Authors: A. Yu. Briukhanov; E. V. Vasilev; S. A. Egorov;

Automated Control System for Drum-Type Biofermenter

Abstract

Modern production increasingly relies on the implementation of automated control systems to improve the efficiency, precision, and safety of technological processes. In the agricultural sector, complex technologies involve the processing or disposal of organic waste through biotransformation or degradation. These processes occur in multiple phases, each requiring specific operating conditions. To enhance overall effectiveness, there is a need for an automated system capable of monitoring the biothermal reaction process and managing the operational modes of a biofermenter in accordance with the current phase of organic waste processing. (Research purpose) The aim of this research is to develop an automated control system for a drum-type biofermenter. (Materials and methods) The study was conducted using an experimental drum-type biofermenter operating under conditions of aeration of the processed organic matter. The automated control system is built on a three-level architecture: the upper level consists of a server and an operator’s automated workstation, the middle level includes a programmable logic controller, and the lower level comprises sensors and actuators. Temperature inside the bioreactor is measured using resistance temperature detectors housed in immersion sleeves. Airflow is calculated based on readings from a diff erential pressure sensor. The drum’s rotation speed is monitored using an optical non-contact sensor. (Results and discussion) The proposed control system enables automated monitoring of key processing parameters and supports effective management of the biofermenter’s operating modes. Testing demonstrated the system’s ability to accurately monitor and display the mixture temperature, aeration airfl ow, and drum rotation speed. The system also allows for rapid mode adjustments to operating modes and facilitates the identification of optimal parameters for efficient organic waste processing. (Conclusions) The automated control system for organic waste processing in a drum-type biofermenter ensures continuous monitoring of key parameter. This capability facilitates the identification of optimal operating modes and the development of adjustment algorithms tailored to different types of organic mixtures, ultimately contributing to the production of a high-quality end product. 

Keywords

drum-type biofermenter, organic waste processing, S, automated control system, TJ1-1570, Agriculture, Mechanical engineering and machinery

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold