Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ AIMS Mathematicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2024 . Peer-reviewed
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
AIMS Mathematics
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

L0-Norm based Image Pansharpening by using population-based algorithms

Authors: Mehmet Akif Günen; María-Luisa Pérez-Delgado; Erkan Beşdok;

L0-Norm based Image Pansharpening by using population-based algorithms

Abstract

<p>Earth observation satellites capture panchromatic images at high spatial resolution and multispectral images at lower resolution to optimize the use of their onboard energy sources. This results in a technical necessity to synthesize high-resolution multispectral images from these data. Pansharpening techniques aim to combine the spatial detail of panchromatic images with the spectral information of multispectral images. However, due to the discrete nature of these images and their varying local statistical properties, many pansharpening methods suffer from numerical artifacts such as chromatic and spatial distortions. This paper introduces the L0-Norm-based pansharpening method (L0pan), which addressed these challenges by maximizing the number of similar pixels between the synthesized pansharpened image and the original panchromatic and multispectral images. L0pan was optimized using a population-based colony search algorithm, enabling it to effectively balance both chromatic fidelity and spatial resolution. Extensive experiments across nine different datasets and comparison with nine other pansharpening methods using ten quality metrics demonstrated that L0pan significantly outperformed its counterparts. Notably, the colony search algorithm yielded the best overall results, highlighting the algorithm's strength in refining pansharpening accuracy. This study contributed to the advancement of pansharpening techniques, offering a method that preserved both chromatic and spatial details more effectively than existing approaches.</p>

Keywords

population-based algorithms, QA1-939, colony search algorithm, pansharpening, image fusion, Mathematics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold