Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Instrumen...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Instrumentation
Article . 2020
Data sources: VIRTA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Instrumentation
Article . 2020 . Peer-reviewed
License: IOP Copyright Policies
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2020
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
Journal of Instrumentation
Article . 2020 . Peer-reviewed
Journal of Instrumentation
Article
License: IOP TDM
Data sources: Sygma
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Multispectral photon-counting for medical imaging and beam characterization

Authors: Brücken, E.; Bharthuar, S.; Emzir, M.; Golovleva, M.; Gädda, A.; Hostettler, R.; Härkönen, J.; +14 Authors

Multispectral photon-counting for medical imaging and beam characterization

Abstract

We present the current status of our project of developing a photon counting detector for medical imaging. An example motivation lays in producing a monitoring and dosimetry device for boron neutron capture therapy, currently not commercially available. Our approach combines in-house developed detectors based on cadmium telluride or thick silicon with readout chip technology developed for particle physics experiments at CERN. Here we describe the manufacturing process of our sensors as well as the processing steps for the assembly of first prototypes. The prototypes use currently the PSI46digV2.1-r readout chip. The accompanying readout electronics chain that was used for first measurements will also be discussed. Finally we present an advanced algorithm developed by us for image reconstruction using such photon counting detectors with focus on boron neutron capture therapy. This work is conducted within a consortium of Finnish research groups from Helsinki Institute of Physics, Aalto University, Lappeenranta-Lahti University of Technology LUT and Radiation and Nuclear Safety Authority (STUK) under the RADDESS program of Academy of Finland. Keywords: Solid state detectors, X-ray detectors, Gamma detectors, Neutron detectors, Instrumentation for hadron therapy, Medical-image reconstruction methods and algorithms.

Country
Finland
Keywords

fast neutrons), Physics - Instrumentation and Detectors, Gamma telescopes, FOS: Physical sciences, Medical-image reconstruction methods and algorithms, thermal, DETECTORS, ta217, ta213, ta114, X-ray detectors, CDTE, Instrumentation and Detectors (physics.ins-det), GAMMA, Physics - Medical Physics, Physical sciences, Neutron detectors (cold, Medical-image reconstruction methods and algorithms, computer-aided diagnosis, SPECT, computeraided Diagnosis, Medical Physics (physics.med-ph), Neutron detectors (cold, thermal, fast neutrons), SYSTEM

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
bronze