Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PTGNG: An Evolutionary Approach for Parameter Optimization in the Growing Neural Gas Algorithm

Authors: Mohanad Dhari Jassam ALALKAWI; Shadi AL SHEHABI; Meltem YILDIRIM IMAMOGLU;

PTGNG: An Evolutionary Approach for Parameter Optimization in the Growing Neural Gas Algorithm

Abstract

Growing Neural Gas (GNG) algorithm is an unsupervised learning algorithm which belongs to the competitive learning family. Since then, GNG has been a subject to vaious developments and implementations found in the literatures for two main reasons: first, the number of neurons (i.e., nodes) is adaptive. Meaning, it is periodically changed through adding new neurons and removing old neurons accordingly in order to find the best network which captures the topological structure of the given data, and to reduce the overall error in that representation. Second, GNG algorithm has no restrictions when compared to other competitive learning algorithms, as it is both free in the space and the number of the neurons. In this paper, we propose and implement an evolutionary based approach, namely PTGNG, to tune GNG algorithm parameters for dealing with data in multiple dimensional space, namely, 2D, 3D, and 4D. The idea basically relies on finding the optimum set of parameter values for any given problem to be solved using GNG algorithm. The evolutionary algorithm by its nature searches a vast space of applicable solutions and evaluates each solution individually. When we implemented our approach of parameters tuning, we can note that GNG captured datasets topological structure with a smaller number of neurons and with a better accuracy. It also showed that the same results appeared when working on datasets with three and four dimensions.

Keywords

Engineering, Mühendislik, Growing Neural Gas;Parameter tuning;Evolutionary algorithm

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
gold