Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Informatyka Automaty...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Informatyka Automatyka Pomiary w Gospodarce i Ochronie Środowiska
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimization of fiber-optic sensor performance in space environments

Authors: Nurzhigit Smailov; Marat Orynbet; Aruzhan Nazarova; Zhadyger Torekhan; Sauletbek Koshkinbayev; Kydyrali Yssyraiyl; Rashida Kadyrova; +1 Authors

Optimization of fiber-optic sensor performance in space environments

Abstract

This article explores mathematical modeling strategies aimed at developing advanced stabilization techniques for fiber-optic sensors (FOS) used in space infrastructure. These sensors operate in extreme environments characterized by significant temperature fluctuations, high radiation exposure, and continuous mechanical vibrations, all of which can impact their performance. To address these challenges, this study proposes protective solutions, optimized design enhancements, and the integration of new system components to improve sensor durability and measurement precision. Numerical simulations validate the effectiveness of these solutions in maintaining sensor functionality during long-duration space missions. Additionally, the improved monitoring and control methodologies developed in this research contribute to enhanced operational efficiency and long-term sustainability in space applications. Beyond aerospace, these techniques are also applicable to harsh environments such as deep-sea exploration and underground mining, where extreme conditions demand highly resilient sensing technologies. The continued evolution of fiber-optic technologies supports the advancement of sensor systems across a wide range of industrial and scientific applications.

Related Organizations
Keywords

space-grade materials, Environmental sciences, numerical modeling, radiation-induced attenuation, Environmental engineering, GE1-350, TA170-171, thermal stability, fiber Bragg grating, vibration resistance

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Published in a Diamond OA journal