
arXiv: 2503.17581
A computational method for the synthesis of time-optimal feedback control laws for linear nilpotent systems is proposed. The method is based on the use of the bang-bang theorem, which leads to a characterization of the time-optimal trajectory as a parameter-dependent polynomial system for the control switching sequence. A deflated Newton's method is then applied to exhaust all the real roots of the polynomial system. The root-finding procedure is informed by the Hermite quadratic form, which provides a sharp estimate on the number of real roots to be found. In the second part of the paper, the polynomial systems are sampled and solved to generate a synthetic dataset for the construction of a time-optimal deep neural network -- interpreted as a binary classifier -- via supervised learning. Numerical tests in integrators of increasing dimension assess the accuracy, robustness, and real-time-control capabilities of the approximate control law.
FOS: Computer and information sciences, Computer Science - Machine Learning, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Optimization and Control (math.OC), FOS: Mathematics, Mathematics - Optimization and Control, Machine Learning (cs.LG)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
