Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Medical Physicsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Medical Physics
Article . 1998 . Peer-reviewed
License: Wiley TDM
Data sources: Crossref
Medical Physics
Article . 1998
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Algorithm for image reconstruction in multi-slice helical CT

Authors: K, Taguchi; H, Aradate;

Algorithm for image reconstruction in multi-slice helical CT

Abstract

Efforts are being made to develop a new type of CT system that can scan volumes over a large range within a short time with thin slice images. One of the most promising approaches is the combination of helical scanning with multi-slice CT, which involves several detector arrays stacked in the z direction. However, the algorithm for image reconstruction remains one of the biggest problems in multi-slice CT. Two helical interpolation methods for single-slice CT, 360LI and 180LI, were used a starting points and extended to multi-slice CT. The extended methods, however, had a serious image quality problem due to the following three reasons: (1) excessively close slice positions of the complementary and direct data, resulting in a larger sampling interval; (2) the existence of several discontinuous changeovers in pairs of data samples for interpolation; and (3) the existence of cone angles. Therefore we have proposed a new algorithm to overcome the problem. It consists of the following three parts: (1) optimized sampling scan; (2) filter interpolation; and (3) fan-beam reconstruction. Optimized sampling scan refers to a special type of multi-slice helical scan developed to shift the slice position of complementary data and to acquire data with a much smaller sampling interval in the z direction. Filter interpolation refers to a filtering process performed in the z direction using several data. The normal fan-beam reconstruction technique is used. The section sensitivity profile (SSP) and image quality for four-array multi-slice CT were investigated by computer simulations. Combinations of three types of optimized sampling scan and various filter widths were used. The algorithm enables us to achieve acceptable image quality and spatial resolution at a scanning speed that is about three times faster than that for single-slice CT. The noise characteristics show that the proposed algorithm efficiently utilizes the data collected with optimized sampling scan. The new algorithm allows suitable combinations of scan and filter parameters to be selected to meet the purpose of each examination.

Related Organizations
Keywords

Phantoms, Imaging, Radiographic Image Interpretation, Computer-Assisted, Computer Simulation, Models, Theoretical, Tomography, X-Ray Computed, Sensitivity and Specificity, Algorithms

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    261
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 0.1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
261
Top 1%
Top 0.1%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!