Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DROPS - Dagstuhl Res...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Algorithmica
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Article . 2025
License: CC BY
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research Collection
Conference object . 2024
License: CC BY
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2025
Data sources: zbMATH Open
ETH Zürich Research Collection
Conference object . 2024
Data sources: Datacite
ETH Zürich Research Collection
Article . 2025
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2024
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

Linear-time MaxCut in multigraphs parameterized above the Poljak-Turzík bound
Authors: Lill, Jonas; Petrova, Kalina; Weber, Simon;

Linear-Time MaxCut in Multigraphs Parameterized Above the Poljak-Turzík Bound

Abstract

Abstract MaxCut is a classical $$\textsf{NP}$$ NP -complete problem and a crucial building block in many combinatorial algorithms. The famous Edwards-Erdös bound states that any connected graph on n vertices with m edges contains a cut of size at least $$\frac{m}{2}+\frac{n-1}{4}$$ m 2 + n - 1 4 . Crowston, Jones and Mnich [Algorithmica, 2015] showed that the MaxCut problem on simple connected graphs admits an FPT algorithm, where the parameter k is the difference between the desired cut size c and the lower bound given by the Edwards-Erdös bound. This was later improved by Etscheid and Mnich [Algorithmica, 2017] to run in parameterized linear time, i.e., $$f(k)\cdot O(m)$$ f ( k ) · O ( m ) . We improve upon this result in two ways: Firstly, we extend the algorithm to work also for multigraphs (alternatively, graphs with positive integer weights). Secondly, we change the parameter; instead of the difference to the Edwards-Erdös bound, we use the difference to the Poljak-Turzík bound. The Poljak-Turzík bound states that any weighted graph G has a cut of weight at least $$\frac{w(G)}{2}+\frac{w_{MSF}(G)}{4}$$ w ( G ) 2 + w MSF ( G ) 4 , where w(G) denotes the total weight of G, and $$w_{MSF}(G)$$ w MSF ( G ) denotes the weight of its minimum spanning forest. In connected simple graphs the two bounds are equivalent, but for multigraphs the Poljak-Turzík bound can be larger and thus yield a smaller parameter k. Our algorithm also runs in parameterized linear time, i.e., $$f(k)\cdot O(m+n)$$ f ( k ) · O ( m + n ) .

Keywords

FOS: Computer and information sciences, Discrete Mathematics (cs.DM), multigraphs, Parameterized complexity, tractability and kernelization, Multigraphs, Computational Complexity (cs.CC), Fixed-parameter tractability; maximum cut; Edwards-Erdős bound; Poljak-Turzík bound; multigraphs; integer-weighted graphs, integer-weighted graphs, Article, maximum cut, Edwards-Erd & ouml;s bound, Integer-weighted graphs, Poljak-Turz & iacute;k bound, Computer Science - Data Structures and Algorithms, Poljak-Turzík bound, Data Structures and Algorithms (cs.DS), Edwards-Erdős bound, 004, Computer Science - Computational Complexity, Edwards-Erdös bound, Graph theory (including graph drawing) in computer science, fixed-parameter tractability, Fixed-parameter tractability, Maximum cut, Fixed-parameter tractability; Maximum cut; Edwards-Erd & ouml;s bound; Poljak-Turz & iacute;k bound; Multigraphs; Integer-weighted graphs, Computer Science - Discrete Mathematics, ddc: ddc:004

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid