
pmid: 28549974
Tacrolimus sorption to tubes was evaluated using pump and drip methods For tubes, polyvinylchloride (PVC)- and non-PVC-based (polyurethane [PU] and polyolefin [PO]) tubes were used. First, inner surface properties of tubes were analyzed using field emission scanning electron microscopy and X-ray photoelectron spectroscopy. Tacrolimus was quantitatively analyzed using high-performance liquid chromatography with UV detection. For kinetic sorption analysis, diluted tacrolimus to 10μg/mL was passed through 1-m-long tubes at 10mL/h. Samples were collected at 1-4h. The inner surface of PO-based tubes was relatively smooth and soft compared with those of PVC- and PU-based tubes. Atomic compositions of tubes matched chemical formulas of polymers excluding low-level impurity in PVC-based tubes. Tacrolimus was successfully analyzed and linearly determined at 2.5-20μg/mL. From both methods, PVC- and PO-based tubes exhibited the highest and the lowest (<10%) sorption levels to tacrolimus, respectively. Tacrolimus was stably delivered using the pump method. Results suggested that the pump method can estimate tacrolimus sorption in administration set tubes and evaluate other sorptional drugs used at low concentrations. PO-based tubes also have promising potential as an alternative for administration set tubes.
Polymers, Photoelectron Spectroscopy, Tacrolimus/chemistry*, Polyurethanes, 610, Pump, Tacrolimus, PVC, Non-PVC, Sorption, Polyvinyl Chloride/chemistry*, Administration set, Polyvinyl Chloride, Polyurethanes/chemistry*
Polymers, Photoelectron Spectroscopy, Tacrolimus/chemistry*, Polyurethanes, 610, Pump, Tacrolimus, PVC, Non-PVC, Sorption, Polyvinyl Chloride/chemistry*, Administration set, Polyvinyl Chloride, Polyurethanes/chemistry*
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 21 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
