Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Search ability of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning

Authors: Hisao Ishibuchi; Yusuke Nakashima; Yusuke Nojima;

Search ability of evolutionary multiobjective optimization algorithms for multiobjective fuzzy genetics-based machine learning

Abstract

Recently evolutionary multiobjective optimization (EMO) algorithms have been actively used for the design of accurate and interpretable fuzzy rule-based systems. This research area is often referred to as multiobjective genetic fuzzy systems where EMO algorithms are used to search for a number of non-dominated fuzzy rule-based systems with respect to their accuracy and interpretability. The main advantage of the use of EMO algorithms for fuzzy system design over single-objective optimizers is that multiple alternative fuzzy rule-based systems with different accuracy-interpretability tradeoffs are obtained by their single run. The decision maker can choose a single fuzzy rule-based system according to their preference. There still exist several important issues to be discussed in this research area such as the definition of interpretability, the formulation of interpretability measures, the visualization of tradeoff relations, and the interpretability of the explanation of fuzzy reasoning results. In this paper, we discuss the ability of EMO algorithms as multiobjective optimizers to search for Pareto optimal or near Pareto optimal fuzzy rule-based systems. More specifically, we examine whether EMO algorithms can find non-dominated fuzzy rule-based systems that approximate the entire Pareto fronts of multiobjective fuzzy system design problems.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Average
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!