
Spiking Neural Networks (SNNs) are recognised for processing spatiotemporal information with ultra-low power consumption. However, applying a non-efficient encoding-decoding algorithm can counter the efficiency advantages of the SNNs. In this sense, this paper presents one-step ahead forecasting centered on the application of an optimised encoding-decoding algorithm based on Pulse Width Modulation (PWM) for SNNs. The validation is carried out with sine-wave, 3 UCI and 1 available real-world datasets. The results show the practical disappearance of the computational and energy costs associated with the encoding and decoding phases (less than 2% of the total costs) and very satisfactory forecasting results (MAE lower than 0.0357) for any dataset.
Spiking Neural Networks, Engineering machinery, tools, and implements, forecasting, Pulse Width Modulation (PWM) based encoding-decoding algorithm, TA213-215
Spiking Neural Networks, Engineering machinery, tools, and implements, forecasting, Pulse Width Modulation (PWM) based encoding-decoding algorithm, TA213-215
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
