Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.18653/v1/20...
Article . 2023 . Peer-reviewed
Data sources: Crossref
https://dx.doi.org/10.60692/2w...
Other literature type . 2023
Data sources: Datacite
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC BY
Data sources: Datacite
https://dx.doi.org/10.60692/zq...
Other literature type . 2023
Data sources: Datacite
DBLP
Article
Data sources: DBLP
DBLP
Conference object
Data sources: DBLP
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mao-Zedong at SemEval-2023 Task 4: Label Represention Multi-Head Attention Model with Contrastive Learning-Enhanced Nearest Neighbor Mechanism for Multi-Label Text Classification

Mao - Zedong في SemEval -2023 المهمة 4: نموذج الانتباه متعدد الرؤوس لتمثيل الملصقات مع التعلم المتباين - آلية الجار الأقرب المحسنة لتصنيف النص متعدد الملصقات
Authors: Zhang Che; Pingan Liu; Z. J. Xiao; Haojun Fei;

Mao-Zedong at SemEval-2023 Task 4: Label Represention Multi-Head Attention Model with Contrastive Learning-Enhanced Nearest Neighbor Mechanism for Multi-Label Text Classification

Abstract

L'étude des valeurs humaines est essentielle à la fois dans les domaines pratiques et théoriques. Avec le développement de la linguistique computationnelle, la création d'ensembles de données à grande échelle a permis de reconnaître automatiquement les valeurs humaines avec précision. SemEval 2023 Task 4(Kiesel et al., 2023) fournit un ensemble d'arguments et 20 types de valeurs humaines qui sont implicitement exprimés dans chaque argument. Dans cet article, nous présentons la solution de notre équipe. Nous utilisons le modèle Roberta(Liu et al.) pour obtenir le codage vectoriel de mot du document et proposons un mécanisme d'attention à plusieurs têtes pour établir des connexions entre des étiquettes spécifiques et des composants sémantiques. De plus, nous utilisons un mécanisme K-nearest neighbor amélioré par l'apprentissage contrastif (Su et al.) pour exploiter les informations d'instance existantes pour la prédiction. Notre approche a atteint un score F1 de 0,533 sur le jeu de tests et est classée quatrième au classement. Nous rendons notre code accessible au public sur https://github.com/peterlau0626/semeval2023-task4-HumanValue.

El estudio de los valores humanos es esencial tanto en el ámbito práctico como en el teórico. Con el desarrollo de la lingüística computacional, la creación de conjuntos de datos a gran escala ha permitido reconocer automáticamente los valores humanos con precisión. La tarea 4 de SemEval 2023 (Kiesel et al., 2023) proporciona un conjunto de argumentos y 20 tipos de valores humanos que se expresan implícitamente en cada argumento. En este documento, presentamos la solución de nuestro equipo. Utilizamos el modelo de Roberta(Liu et al.) para obtener la codificación vectorial de palabras del documento y proponemos un mecanismo de atención de múltiples cabezales para establecer conexiones entre etiquetas específicas y componentes semánticos. Además, utilizamos un mecanismo de aprendizaje contrastivo (Su et al.) para aprovechar la información de la instancia existente para la predicción. Nuestro enfoque logró una puntuación F1 de 0.533 en el conjunto de pruebas y ocupó el cuarto lugar en la tabla de clasificación. Hacemos que nuestro código esté disponible públicamente en https://github.com/peterlau0626/semeval2023-task4-HumanValue.

The study of human values is essential in both practical and theoretical domains.With the development of computational linguistics, the creation of large-scale datasets has made it possible to automatically recognize human values accurately.SemEval 2023 Task 4(Kiesel et al., 2023) provides a set of arguments and 20 types of human values that are implicitly expressed in each argument.In this paper, we present our team's solution.We use the Roberta(Liu et al.) model to obtain the word vector encoding of the document and propose a multi-head attention mechanism to establish connections between specific labels and semantic components.Furthermore, we use a contrastive learning-enhanced K-nearest neighbor mechanism(Su et al.) to leverage existing instance information for prediction.Our approach achieved an F1 score of 0.533 on the test set and ranked fourth on the leaderboard.we make our code publicly available at https://github.com/peterlau0626/semeval2023-task4-HumanValue.

تعد دراسة القيم الإنسانية أمرًا ضروريًا في كل من المجالات العملية والنظرية. مع تطوير اللغويات الحاسوبية، أتاح إنشاء مجموعات بيانات واسعة النطاق التعرف تلقائيًا على القيم الإنسانية بدقة. تقدم المهمة الرابعة من فصل 2023 (Kiesel et al.، 2023) مجموعة من الحجج و 20 نوعًا من القيم الإنسانية التي يتم التعبير عنها ضمنيًا في كل حجة. في هذه الورقة، نقدم حل فريقنا. نستخدم نموذج روبرتا(ليو وآخرون) للحصول على ترميز متجه الكلمة للوثيقة واقتراح آلية انتباه متعددة الرؤوس لإنشاء روابط بين تسميات محددة ومكونات دلالية. علاوة على ذلك، نستخدم آلية الجار الأقرب K - Nearest المعززة بالتعلم المتباين (سو وآخرون) للاستفادة من معلومات المثيل الحالية للتنبؤ. حقق نهجنا درجة F1 قدرها 0.533 في مجموعة الاختبار واحتل المرتبة الرابعة على لوحة الصدارة. نجعل التعليمات البرمجية الخاصة بنا متاحة للجمهور على https://github.com/peterlau0626/semeval2023-task4-HumanValue.

Related Organizations
Keywords

FOS: Computer and information sciences, Artificial intelligence, Economics, Sequence-to-Sequence Learning, Semantic Similarity, Quantum mechanics, Task (project management), Head (geology), Artificial Intelligence, Multi-label Text Classification in Machine Learning, Multi-label Learning, Natural Language Processing, Computer Science - Computation and Language, Natural language processing, Physics, Word Representation, Mechanism (biology), Geomorphology, Geology, FOS: Earth and related environmental sciences, Named Entity Recognition, Computer science, Management, Automatic Keyword Extraction from Textual Data, Computer Science, Physical Sciences, k-nearest neighbors algorithm, Computation and Language (cs.CL), SemEval

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green