Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2018
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

DeepPos: Deep Supervised Autoencoder Network for CSI Based Indoor Localization

Authors: Yazdanian, Peyman; Pourahmadi, Vahid;

DeepPos: Deep Supervised Autoencoder Network for CSI Based Indoor Localization

Abstract

The widespread mobile devices facilitated the emergence of many new applications and services. Among them are location-based services (LBS) that provide services based on user's location. Several techniques have been presented to enable LBS even in indoor environments where Global Positioning System (GPS) has low localization accuracy. These methods use some environment measurements (like Channel State Information (CSI) or Received Signal Strength (RSS)) for user localization. In this paper, we will use CSI and a novel deep learning algorithm to design a robust and efficient system for indoor localization. More precisely, we use supervised autoencoder (SAE) to model the environment using the data collected during the training phase. Then, during the testing phase, we use the trained model and estimate the coordinates of the unknown point by checking different possible labels. Unlike the previous fingerprinting approaches, in this work, we do not store the {CSI/RSS} of fingerprints and instead we model the environment only with a single SAE. The performance of the proposed scheme is then evaluated in two indoor environments and compared with that of similar approaches.

10 pages, 15 Figures

Keywords

Signal Processing (eess.SP), FOS: Computer and information sciences, Computer Science - Machine Learning, Artificial Intelligence (cs.AI), Computer Science - Artificial Intelligence, Statistics - Machine Learning, FOS: Electrical engineering, electronic engineering, information engineering, Machine Learning (stat.ML), Electrical Engineering and Systems Science - Signal Processing, Machine Learning (cs.LG)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green