Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Oncolog...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Oncology
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Oncology
Article . 2024
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48620/84...
Other literature type . 2024
Data sources: Datacite
https://dx.doi.org/10.5167/uzh...
Other literature type . 2024
Data sources: Datacite
versions View all 7 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Configuring thermal ablation volumes for treatment of distinct tumor shapes: a repeatability study using a robotic approach

Authors: Milica Bulatović; Jan Hermann; Pascale Tinguely; Pascale Tinguely; Iwan Paolucci; Stefan Weber;

Configuring thermal ablation volumes for treatment of distinct tumor shapes: a repeatability study using a robotic approach

Abstract

ObjectivesIn the current clinical practice of thermal ablation treatment for liver tumors, achieving consistent and effective clinical outcomes across tumors of varying shapes, sizes and locations remains challenging. The aim of this study was to evaluate the repeatability of a novel robotic approach for configurable ablation of distinct tumor shapes and compare it to the standard ablation technique for creating ellipsoidal ablation volumes.Materials and methodsThe repeatability was evaluated in terms of width variability in created ablation volumes. Using a robotic navigation platform, custom ablation profiles configured with power, time, and distance parameters were designed to create four distinct ablation shapes. The profiles were applied for microwave ablation in a tissue-mimicking liver model. For comparison of ablation shape variability, six standard ellipsoidal shapes were created using the standard ablation technique by configuring power and time parameters. For each sample, the resulting ablation area was segmented, and the resulting shape width and length were calculated at the measurement points. Width variability was calculated as the median of the absolute pairwise differences in width at each measurement point, and configurable versus standard ablation shapes were compared using the Mann–Whitney U test.ResultsAll tissue-mimicking samples were successfully ablated using both configurable (n = 48) and standard ablation technique (n = 35). Study findings revealed noninferiority regarding repeatability of created ablation shapes using the robotic platform for configurable ablation, compared to created standard ellipsoidal ablation shapes (p < 0.001, 95% CI ≤ -0.05 mm, Δ = -0.22 mm). Median repeatability of created configurable shapes was 1.00 mm, and for standard shapes 1.22 mm. Maximal repeatability for both groups was below 3 mm.ConclusionThe repeatability of configurable ablation shapes was observed to be noninferior to the standard ablation shapes. Achieving configurable ablation volumes underscores the potential to advance personalization of thermal ablation treatment and broaden its applicability to distinct tumor cases. In-vivo validation is needed for evaluation of the clinical implications of this novel treatment technique.

Keywords

tissue-sparing, perivascular, robotic navigation, Neoplasms. Tumors. Oncology. Including cancer and carcinogens, 610 Medicine & health, peribiliary, treatment personalization, liver cancer, Oncology, tumor shape, microwave ablation, 2730 Oncology, 1306 Cancer Research, RC254-282, 10217 Clinic for Visceral and Transplantation Surgery

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Related to Research communities
Cancer Research