Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Methodsarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Methods
Article . 2022 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
SSRN Electronic Journal
Article . 2022 . Peer-reviewed
Data sources: Crossref
SSRN Electronic Journal
Article . 2021 . Peer-reviewed
Data sources: Crossref
Methods
Article . 2022
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Scssa:A Clustering Method for Single Cell Rna-Seq Data Based on Semi-Supervised Autoencoder

Authors: Jian-Ping Zhao; Tong-Shuai Hou; Yansen Su; Chun-Hou Zheng;

Scssa:A Clustering Method for Single Cell Rna-Seq Data Based on Semi-Supervised Autoencoder

Abstract

Single cell sequencing is a technology for high-throughput sequencing analysis of genome, transcriptome and epigenome at the single cell level. It can improve the shortcomings of traditional methods, reveal the gene structure and gene expression state of a single cell, and reflect the heterogeneity between cells. Among them, the clustering analysis of single-cell RNA data is a very important step, but the clustering of single-cell RNA data is faced with two difficulties, dropout events and dimension curse. At present, many methods are only driven by data, and do not make full use of the existing biological information.In this work, we propose scSSA, a clustering model based on semi-supervised autoencoder, fast independent component analysis (FastICA) and Gaussian mixture clustering. Firstly, the semi-supervised autoencoder imputes and denoises the scRNA-seq data, and then get the low-dimensional latent representation. Secondly, the low-dimensional representation is reduced the dimension and clustered by FastICA and Gaussian mixture model respectively. Finally, scSSA is compared with Seurat, CIDR and other methods on 10 public scRNA-seq datasets.The results show that scSSA has superior performance in cell clustering on 10 public datasets. In conclusion, scSSA can accurately identify the cell types and is generally applicable to all kinds of single cell datasets. scSSA has great application potential in the field of scRNA-seq data analysis. Details in the code have been uploaded to the website https://github.com/houtongshuai123/scSSA/.

Related Organizations
Keywords

Sequence Analysis, RNA, Gene Expression Profiling, Cluster Analysis, RNA, RNA-Seq, Single-Cell Analysis

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!