
pmid: 38091759
A nonconvex distributed optimization problem involving nonconvex objective functions and inequality constraints within an undirected multi-agent network is considered. Each agent communicates with its neighbors while only obtaining its individual local information (i.e. its constraint and objective function information). To overcome the challenge caused by the nonconvexity of the objective function, a collective neurodynamic penalty approach in the framework of particle swarm optimization is proposed. The state solution convergence of every neurodynamic penalty approach is directed towards the critical point ensemble of the nonconvex distributed optimization problem. Furthermore, employing their individual neurodynamic models, each neural network conducts accurate local searches within constraints. Through the utilization of both locally best-known solution information and globally best-known solution information, along with the incremental enhancement of solution quality through iterations, the globally optimal solution for a nonconvex distributed optimization problem can be found. Simulations and an application are presented to demonstrate the effectiveness and feasibility.
multi-agent network, Applications of mathematical programming, consensus, nonconvex and nonsmooth distributed optimization, Computer Simulation, Neural Networks, Computer, Nonconvex programming, global optimization, Robustness in mathematical programming, collective neurodynamic approach, Algorithms
multi-agent network, Applications of mathematical programming, consensus, nonconvex and nonsmooth distributed optimization, Computer Simulation, Neural Networks, Computer, Nonconvex programming, global optimization, Robustness in mathematical programming, collective neurodynamic approach, Algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 16 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
