Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Multimedia Tools and...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Multimedia Tools and Applications
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm

Authors: Nameirakpam Dhanachandra; Yambem Jina Chanu;

An image segmentation approach based on fuzzy c-means and dynamic particle swarm optimization algorithm

Abstract

Image segmentation has considered an important step in image processing. Fuzzy c-means (FCM) is one of the commonly used clustering algorithms because of its simplicity and effectiveness. However, FCM has the disadvantages of sensitivity to initial values, falling easily into local optimal solution and sensitivity to noise. To tackle these disadvantages, many optimization-based fuzzy clustering methods have been proposed in the literature survey. Particle swarm optimization (PSO) has good global optimization capability and a hybrid of FCM and PSO have improved accuracy over tradition FCM clustering. In this paper, a new image segmentation method based on Dynamic Particle swarm optimization (DPSO) and FCM algorithm along with the noise reduction mechanism is proposed. DPSO has the advantages to change the inertia weight and learning parameters dynamically. It adopts the inertia weight according to the fitness value and learning parameters along with time. The proposed method combines DPSO with FCM, using the advantages of global optimization searching and parallel computing of DPSO to find a superior result of the FCM algorithm. Moreover, a noise reduction mechanism based on the surrounding pixels is used for enhancing the anti-noise ability. The synthetic image and Magnetic Resonance Imaging (MRI) have been used for testing the proposed method by introducing different types of noises and the results show that the proposed algorithm has better performance and less sensitive to noise.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    67
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
67
Top 1%
Top 10%
Top 1%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!