Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Solid State Ionicsarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Solid State Ionics
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Hal
Article . 2019
Data sources: Hal
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Solid State Ionics
Article . 2019 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2019
License: CC BY NC SA
Data sources: Datacite
Solid State Ionics
Article . 2019 . Peer-reviewed
http://dx.doi.org/10.1016/j.ss...
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The effect of short-range interaction and correlations on the charge and electric field distribution in a model solid electrolyte

Authors: Patsahan, T.; Bokun, G.; Di Caprio, Dung; Holovko, M.; Vikhrenko, V.;

The effect of short-range interaction and correlations on the charge and electric field distribution in a model solid electrolyte

Abstract

A simple lattice model of a solid electrolyte presented as a xy-slab geometry system of mobile cations on a background of energetic landscape of the host system and a compensating field of uniformly distributed anions is studied. The system is confined in the z-direction between two oppositely charged walls, which are in parallel to xy-plane. Besides the long-range Coulomb interactions appearing in the system, the short-range attractive potential between cations is considered in our study. We propose the mean field description of this model and extend it by taking into account correlation effects at short distances. Using the free energy minimization at each of z-coordinates, the corresponding set of non-linear equations for the chemical potential is derived. The set of equations was solved numerically with respect to the charge density distribution in order to calculate the cations distribution profile and the electrostatic potential in the system along z-direction under different conditions. An asymmetry of charge distribution profile with respect to the midplane of the system is observed. The effects of the short-range interactions and pair correlations on the charge and electric field distributions are demonstrated.

Country
Belarus
Keywords

электрические поля, Condensed Matter - Materials Science, приближение среднего поля, Statistical Mechanics (cond-mat.stat-mech), корреляционные эффекты, Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, корреляции, твердые электролиты, [CHIM.THEO] Chemical Sciences/Theoretical and/or physical chemistry, кулоновское взаимодействие, распределение заряда, [PHYS.COND] Physics [physics]/Condensed Matter [cond-mat], Condensed Matter - Statistical Mechanics

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average
Green
bronze