Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IET Intelligent Tran...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IET Intelligent Transport Systems
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Elevating adaptive traffic signal control in semi‐autonomous traffic dynamics by using connected and automated vehicles as probes

Authors: Yurong Li; Liqun Peng;

Elevating adaptive traffic signal control in semi‐autonomous traffic dynamics by using connected and automated vehicles as probes

Abstract

AbstractIn this work, the connected vehicle's messages are used to create an enhanced adaptive traffic signal control (ATSC) system for improved traffic flow. Few existing studies use connected and automated vehicles (CAVs) to develop traffic signal control algorithms under hybrid connected and autonomous conditions. The proposed approach focuses on a four‐phase traffic intersection with both CAVs and human‐driven vehicles (HVs). CAVs share real‐time state information, and a model called Roads Dynamic Segmentation estimates queuing procedures and vehicle fleet numbers on dynamic road sections. This information is used in the Store and Forward Model (SFM) to predict intersection queuing length. The ATSC system, based on model predictive control (MPC), aims to minimize intersection queue length while considering traffic constraints (undersaturated, saturated, and oversaturated) and avoiding free‐flow problems due to queue overflow. To reduce computational complexity, a linear‐quadratic‐regulator (LQR) is used. Real‐world vehicle trajectories and the SUMO tool are used for experimental purposes. Results show that the proposed method reduces average delay by 38.50% and 33.42% compared to fixed timing and traditional MPC in cases of oversaturated traffic flow with 100% CAV penetration. Even with a penetration rate of only 20%, average delay decreases by 13.65% and 6.50%, respectively. This study showcases not only the potential benefits of CAV in enhancing traffic, but also enables the optimal utilization of green duration in signalized intersection control systems. This helps prevent traffic congestion and ensures the efficient and smooth movement of traffic flow.

Related Organizations
Keywords

Transportation engineering, TA1001-1280, automated driving and intelligent vehicles, Electronic computers. Computer science, QA75.5-76.95, adaptive control

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
gold