Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Accessarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024 . Peer-reviewed
License: CC BY NC ND
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Access
Article . 2024
Data sources: DOAJ
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Establishment of the Model for Estimating the Organic Carbon Content of Forest Topsoil Based on Remote Sensing Data

Authors: Shulin Zheng; Jie Zhang; Mingyue Song; Pei Zhou; Xiaoyu Guo; Haijun Yue;

Establishment of the Model for Estimating the Organic Carbon Content of Forest Topsoil Based on Remote Sensing Data

Abstract

Understanding the organic carbon content of forest soil will aid in studying the spatial distribution pattern of regional soil organic carbon (SOC) storage. Monitoring and researching forest SOC content is a crucial task that usually involves outdoor sampling and indoor experiments, which takes up much time. To improving its work efficiency, estimation models for topsoil organic carbon content are established. Correlation analysis was employed to evaluate the impact of factors (including elevation, slope, slope orientation, curvature, topographic wetness index, normalized difference vegetation index, enhanced vegetation index, and total nitrogen) on SOC content. Models for forest SOC content were constructed by machine learning algorithms using the above factors to enhance the efficiency of carbon storage estimation. Ultimately, the best model was used to generate a map of the SOC content. Research shows that: The Pearson correlation coefficient (r) between soil total nitrogen and SOC content is highest in both 0-5cm and 5-10cm soil layers (r=0.71, r=0.87). Optimal models for SOC content in the 0-5cm and 5-10cm soil layers are the random forest regression model and the boosted regression tree model, respectively. The coefficient of determination (R2) of the models are above 0.9. In the both soil layers, the performance of models constructed using regression tree algorithms is better than those constructed using linear regression, with the former having a greater R2 than the latter. Specifically, the R2 of the 0-5cm soil layer are 0.998 and 0.789, and the R2 of the 5-10cm soil layer are 0.997 and 0.996.

Related Organizations
Keywords

remote sensing data, linear regression algorithms, Topsoil organic carbon content, Electrical engineering. Electronics. Nuclear engineering, regression tree algorithms, TK1-9971

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold