Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Computers
Article . 1994 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Area time trade-offs in micro-grain VLSI array architectures

Area time trade-offs in micro-grain VLSI array architectures.
Authors: Raminder Singh Bajwa; Robert Michael Owens; Mary Jane Irwin;

Area time trade-offs in micro-grain VLSI array architectures

Abstract

Summary: We study the relative performance of three different massively parallel fine-grain, VLSI, control-flow architectures. The processor architectures being considered are: an associative memory architecture, a Mux-based SIMD architecture and a modification of the Mux-based architecture using RAMs making it suitable for systolic MIMD/MISD computation. All three architectures are organized as two-dimensional, near-neighbor mesh connected, array of processors. All three are very similar in their construction, and in their control and data-flow requirements. The custom hardware for all three architectures was built using the same technology. We compare and contrast the performance of these three VLSI architectures for a select set of applications. To evaluate the computational power of the three architectures we use the area time product, AT, as the metric. The three designs are known to perform well in their niche applications and we find that for non-niche applications all three designs are comparable in power to within a small constant factor. The performance of the Mux-based SIMD architecture is better in general than the other two in terms of speed though the associative architecture is found to out-perform the SIMD architecture for certain numeric applications like the FFT and matrix multiplication in the \(AT\) sense.

Related Organizations
Keywords

Hardware implementations of nonnumerical algorithms (VLSI algorithms, etc.), Mathematical problems of computer architecture

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    12
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
12
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!