Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Neural Networks and Learning Systems
Article . 2025 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
DBLP
Article
Data sources: DBLP
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integrating Convolution and Sparse Coding for Learning Low-Dimensional Discriminative Image Representations

Authors: Xian Wei; Yingjie Liu; Xuan Tang; Shui Yu; Mingsong Chen;

Integrating Convolution and Sparse Coding for Learning Low-Dimensional Discriminative Image Representations

Abstract

This work investigates the problem of efficiently learning discriminative low-dimensional (LD) representations of multiclass image objects. We propose a generic end-to-end approach that jointly optimizes sparse dictionary and convolutions for learning LOW-dimensional discriminative image representations, named SparConvLow, taking advantage of convolutional neural networks (CNNs), dictionary learning, and orthogonal projections. The whole learning process can be summarized as follows. First, a CNN module is employed to extract high-dimensional (HD) preliminary convolutional features. Second, to avoid the high computational cost of direct sparse coding on HD CNN features, we learn sparse representation (SR) over a task-driven dictionary in the space with the feature being orthogonally projected. We then exploit the discriminative projection on SR. The whole learning process is consistently treated as an end-to-end joint optimization problem of trace quotient maximization. The cost function is well-defined on the product of the CNN parameters space, the Stiefel manifold, the Oblique manifold, and the Grassmann manifold. By using the explicit gradient delivery, the cost function is optimized via a geometrical stochastic gradient descent (SGD) algorithm along with the chain rule and the backpropagation. The experimental results show that the proposed method can achieve a highly competitive performance with the state-of-the-art (SOTA) image classification, object categorization, and face recognition methods, under both supervised and semi-supervised settings. The code is available at https://github.com/MVPR-Group/SparConvLow.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!