Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Medical Imaging
Article . 2019 . Peer-reviewed
License: IEEE Open Access
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Monte Carlo Simulations of Water Exchange Through Myelin Wraps: Implications for Diffusion MRI

Authors: Brusini, Lorenza; Menegaz, Gloria; Nilsson, Markus;

Monte Carlo Simulations of Water Exchange Through Myelin Wraps: Implications for Diffusion MRI

Abstract

Diffusion magnetic resonance imaging (dMRI) yields parameters sensitive to brain tissue microstructure. A structurally important aspect of this microstructure is the myelin wrapping around the axons. This paper investigated the forward problem concerning whether water exchange via the spiraling structure of the myelin can meaningfully contribute to the signal in dMRI. Monte Carlo simulations were performed in a system with intra-axonal, myelin, and extra-axonal compartments. Diffusion in the myelin was simulated as a spiral wrapping the axon, with a custom number of wraps. Exchange (or intra-axonal residence) times were analyzed for various number of wraps and axon diameters. Pulsed gradient sequences were employed to simulate the dMRI signal, which was analyzed using different methods. Diffusional kurtosis imaging analysis yielded the radial diffusivity (RD) and radial kurtosis (RK), while the two-compartment Kärger model yielded estimates the intra-axonal volume fraction ( ν ic ) and exchange time ( τ ). Results showed that τ was on the sub-second level for geometries with axon diameters below 1.0 μ m and less than eight wraps. Otherwise, exchange was negligible compared to typical experimental durations, with τ of seconds or longer. In situations where exchange influenced the signal, estimates of RK and ν ic increased with the number of wraps, while RD decreased. τ estimates from simulated signals were in agreement with predicted ones. In conclusion, exchange through spiraling myelin permits sub-second τ for small diameters and low number of wraps. Such conditions may arise in the developing brain or in neurodegenerative disease, and thus the results could aid the interpretation of dMRI studies.

Related Organizations
Keywords

Diffusion Tensor Imaging, Animals, Brain, Humans, Water, Computer Simulation, Models, Biological, Monte Carlo Method, Myelin Sheath, PGSTE; exchange time; kurtosis; T-2 relaxation; Karger, Rats

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Average
Top 10%
bronze