Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Neural Networksarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Neural Networks
Article . 2021 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
zbMATH Open
Article . 2021
Data sources: zbMATH Open
DBLP
Article
Data sources: DBLP
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

HiAM: A Hierarchical Attention based Model for knowledge graph multi-hop reasoning

HiAM: a hierarchical attention based model for knowledge graph multi-hop reasoning
Authors: Ting Ma; Shangwen Lv; Longtao Huang; Songlin Hu 0001;

HiAM: A Hierarchical Attention based Model for knowledge graph multi-hop reasoning

Abstract

Learning to reason in large-scale knowledge graphs has attracted much attention from research communities recently. This paper targets a practical task of multi-hop reasoning in knowledge graphs, which can be applied in various downstream tasks such as question answering, and recommender systems. A key challenge in multi-hop reasoning is to synthesize structural information (e.g., paths) in knowledge graphs to perform deeper reasoning. Existing methods usually focus on connection paths between each entity pair. However, these methods ignore predecessor paths before connection paths and regard entities and relations within every single path as equally important. With our observations, predecessor paths before connection paths can provide more accurate semantic representations. Furthermore, entities and relations in a single path contribute variously to the right answers. To this end, we propose a novel model HiAM (Hierarchical Attention based Model) for knowledge graph multi-hop reasoning. HiAM makes use of predecessor paths to provide more accurate semantics for entities and explores the effects of different granularities. Firstly, we extract predecessor paths of head entities and connection paths between each entity pair. Then, a hierarchical attention mechanism is designed to capture the information of different granularities, including entity/relation-level and path-level features. Finally, multi-granularity features are fused together to predict the right answers. We go one step further to select the most significant path as the explanation for predicted answers. Comprehensive experimental results demonstrate that our method achieves competitive performance compared with the baselines on three benchmark datasets.

Related Organizations
Keywords

knowledge graph reasoning, Learning and adaptive systems in artificial intelligence, hierarchical attention, Pattern Recognition, Automated, Semantics, predecessor paths, Knowledge, Knowledge representation, Neural Networks, Computer, Problem Solving

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!