Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Imaging I...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Imaging Informatics in Medicine
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2024
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Serveur académique lausannois
Article . 2024
License: CC BY
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Value of MRI - T2 Mapping to Differentiate Clinically Significant Prostate Cancer

Authors: Andreas Michael Bucher; Jan Egger; Julia Dietz; Ralph Strecker; Tom Hilbert; Eric Frodl; Mike Wenzel; +6 Authors

Value of MRI - T2 Mapping to Differentiate Clinically Significant Prostate Cancer

Abstract

AbstractStandardized reporting of multiparametric prostate MRI (mpMRI) is widespread and follows international standards (Pi-RADS). However, quantitative measurements from mpMRI are not widely comparable. Although T2 mapping sequences can provide repeatable quantitative image measurements and extract reliable imaging biomarkers from mpMRI, they are often time-consuming. We therefore investigated the value of quantitative measurements on a highly accelerated T2 mapping sequence, in order to establish a threshold to differentiate benign from malignant lesions. For this purpose, we evaluated a novel, highly accelerated T2 mapping research sequence that enables high-resolution image acquisition with short acquisition times in everyday clinical practice. In this retrospective single-center study, we included 54 patients with clinically indicated MRI of the prostate and biopsy-confirmed carcinoma (n = 37) or exclusion of carcinoma (n = 17). All patients had received a standard of care biopsy of the prostate, results of which were used to confirm or exclude presence of malignant lesions. We used the linear mixed-effects model-fit by REML to determine the difference between mean values of cancerous tissue and healthy tissue. We found good differentiation between malignant lesions and normal appearing tissue in the peripheral zone based on the mean T2 value. Specifically, the mean T2 value for tissue without malignant lesions was (151.7 ms [95% CI: 146.9–156.5 ms] compared to 80.9 ms for malignant lesions [95% CI: 67.9–79.1 ms]; p < 0.001). Based on this assessment, a limit of 109.2 ms is suggested. Aditionally, a significant correlation was observed between T2 values of the peripheral zone and PI-RADS scores (p = 0.0194). However, no correlation was found between the Gleason Score and the T2 relaxation time. Using REML, we found a difference of -82.7 ms in mean values between cancerous tissue and healthy tissue. We established a cut-off-value of 109.2 ms to accurately differentiate between malignant and non-malignant prostate regions. The addition of T2 mapping sequences to routine imaging could benefit automated lesion detection and facilitate contrast-free multiparametric MRI of the prostate.

Keywords

Male, Original Paper, Medizin, Prostate, Prostatic Neoplasms, Middle Aged, Magnetic Resonance Imaging, Diagnosis, Differential, Image Interpretation, Computer-Assisted, Humans, Humans; Male; Prostatic Neoplasms/diagnostic imaging; Prostatic Neoplasms/pathology; Middle Aged; Retrospective Studies; Aged; Magnetic Resonance Imaging/methods; Magnetic Resonance Imaging/standards; Prostate/diagnostic imaging; Prostate/pathology; Diagnosis, Differential; Image Interpretation, Computer-Assisted/methods; Multiparametric Magnetic Resonance Imaging/methods; Multiparametric prostate MRI; Prostate cancer; Quantitative imaging; T2 mapping, Multiparametric Magnetic Resonance Imaging, Retrospective Studies, Aged

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold